Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

The steps above can be abbreviated as a fixed-point Gauss-Seidel problem 

Mathinline
body--uriencoded--\widetilde%7B\mathbf d%7D%5e%7Bn+1%7D_%7B\Gamma, i+1%7D = \mathbf H(\mathbf d%5e%7Bn+1%7D_%7B\Gamma,i%7D)
 with respect to the interface displacement, which is to be solved until convergence of the corresponding residuals 
Mathinline
body--uriencoded--\mathbf r_%7B\Gamma, i+1%7D = \mathbf R( \mathbf%7B d%7D%5e%7Bn+1%7D_%7B\Gamma, i%7D) = \mathbf H(\mathbf d%5e%7Bn+1%7D_%7B\Gamma, i+1%7D) - \mathbf%7B d%7D%5e%7Bn+1%7D_%7B\Gamma, i%7D= \widetilde%7B\mathbf d%7D%5e%7Bn+1%7D_%7B\Gamma, i+1%7D - \mathbf%7B d%7D%5e%7Bn+1%7D_%7B\Gamma, i%7D
 . Typical convergence norms are  
Mathinline
body--uriencoded--%7C%7C\mathbf r_%7B\Gamma, i+1%7D%7C%7C_2/ \sqrt%7BN_\Gamma%7D < \epsilon
 which makes the norm independent on the interface mesh size or relative convergence
Mathinline
body--uriencoded--%7C%7C\mathbf r_%7B\Gamma,i+1%7D%7C%7C_2 / %7C%7C\widetilde%7B\mathbf d%7D_%7BG,i+1%7D %7C%7C_2 < \epsilon
. Note that the cost of evaluation of  
Mathinline
body\mathbf R
 is high and it may contain noise/errors (for example due to not fully converged solvers).

Various methods can be used to ensure and accelerated convergence of the root-finding problem. A (dynamic) under-relaxation is 

Mathinline
body--uriencoded--\mathbf%7B d%7D%5e%7Bn+1%7D_%7B\Gamma, i+1%7D = \mathbf%7B d%7D%5e%7Bn+1%7D_%7B\Gamma, i%7D + w_i \, \mathbf r_%7B\Gamma, i+1%7D = w_i \widetilde%7B\mathbf d%7D%5e%7Bn+1%7D_%7B\Gamma, i+1%7D + [1-w_i] \mathbf%7B d%7D%5e%7Bn+1%7D_%7B\Gamma, i%7D
. For example Aitken under-relaxation is given by
Mathinline
body--uriencoded--w_%7Bi+1%7D=-w_i \mathbf r_%7B\Gamma,i+1%7D \cdot \left[\mathbf r_%7B\Gamma,i+2%7D-\mathbf r_%7B\Gamma,i+1%7D\right]/%7C%7C\mathbf r_%7B\Gamma,i+2%7D-\mathbf r_%7B\Gamma,i+1%7D%7C%7C%5e2_2

Mathblock
anchor
alignmentleft
--uriencoded--\mathbf r_%7B\Gamma, i+1%7D = \mathbf R( \mathbf%7B d%7D%5e%7Bn+1%7D_%7B\Gamma, i%7D) =
\mathbf H(\mathbf d%5e%7Bn+1%7D_%7B\Gamma, i+1%7D) - \mathbf%7B d%7D%5e%7Bn+1%7D_%7B\Gamma, i%7D= \widetilde%7B\mathbf d%7D%5e%7Bn+1%7D_%7B\Gamma, i+1%7D - \mathbf%7B d%7D%5e%7Bn+1%7D_%7B\Gamma, i%7D